There are ~ 435,000 Taxicabs operating in the US. In 1999 Taxicabs traveled approximately 27.6 billion vehicle-miles traveled (vmt). There are ~ 3.6 million school buses traveling 6 billion vmt a year. Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vehicle-miles traveled (vmt). Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vehicle-miles traveled (vmt).

Factors influencing Detection of Nuclear Materials

- System Requirements
- Cost
- Power
- Sensors
- Computing

Options for Sensors

- Very Large Nuclear Detector Arrays
- Small Nuclear Spectrometer (Sintronics)
- Small Nuclear Spectrometer (Artemis)
- Small Nuclear Spectrometer (Triton)
- Small Nuclear Spectrometer (Vista)

Factors influencing Detection

- System Sensitivity
- Virtual Exposure Time Extension
- Virtual Stationary Viewpoints

Consider the following: A method for the detection of clandestine weapons and materials, and the element of surprise is a weapon of war. How do we respond? Will nuclear material arrive in a transport container? Is it possible to intercept a truck shortly after entry into the U.S.? Can we detect weapons material? Are the vehicles System Equipped? Can we respond in an instant? Is this value justifiable? Can this be made feasible? A nationwide system is proposed where autonomous WMD sensor packages would be installed on various commercial fleet vehicles, such as semi-trailers, trains, taxicabs, etc. These autonomous sensor packages would essentially be piggybacking on existing vehicles, requiring little, if any, driver interaction.

SUMMARY

The success of such a system depends on the voluntary cooperation of the transportation industry. The ubiquitous and random nature of the installed systems described in this paper will put powerful Nuclear (CBR*) Detectors in an infinitely greater number of locations than are available for the instrumentation. The minimum requirements for fleet vehicles to participate have mostly to do with minimum payload and size constraints. However, the cost of the technology is not an option that can point intelligent decision making in an instant. Closed Circuit TV (CCTV) is an option that can point intelligent decision making in an instant. The system use the latest, and most effective detection devices available, regardless of costs. In 1999 Taxicabs traveled approximately 27.6 billion vmt. There are ~ 435,000 Taxicabs operating in the US. In 2002 these trucks traveled approximately 60 billion vmt. There are ~ 3.6 million school buses traveling 6 billion vmt a year. Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vmt. Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vmt.

Factors influencing detection include:

1. System Sensitivity
2. Virtual Exposure Time Extension
3. Virtual Stationary Viewpoints

Some Factors influencing Detection of Nuclear Materials:

- System Sensitivity
- Virtual Exposure Time Extension
- Virtual Stationary Viewpoints

Consider the following: A method for the detection of clandestine weapons and materials, and the element of surprise is a weapon of war. How do we respond? Will nuclear material arrive in a transport container? Is it possible to intercept a truck shortly after entry into the U.S.? Can we detect weapons material? Are the vehicles System Equipped? Can we respond in an instant? Is this value justifiable? Can this be made feasible? A nationwide system is proposed where autonomous WMD sensor packages would be installed on various commercial fleet vehicles, such as semi-trailers, trains, taxicabs, etc. These autonomous sensor packages would essentially be piggybacking on existing vehicles, requiring little, if any, driver interaction.

SUMMARY

The success of such a system depends on the voluntary cooperation of the transportation industry. The ubiquitous and random nature of the installed systems described in this paper will put powerful Nuclear (CBR*) Detectors in an infinitely greater number of locations than are available for the instrumentation. The minimum requirements for fleet vehicles to participate have mostly to do with minimum payload and size constraints. However, the cost of the technology is not an option that can point intelligent decision making in an instant. Closed Circuit TV (CCTV) is an option that can point intelligent decision making in an instant. The system use the latest, and most effective detection devices available, regardless of costs. In 1999 Taxicabs traveled approximately 27.6 billion vmt. There are ~ 435,000 Taxicabs operating in the US. In 2002 these trucks traveled approximately 60 billion vmt. There are ~ 3.6 million school buses traveling 6 billion vmt a year. Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vmt. Of these, ~ 1.4 million Semi Trailer Trucks, 730 thousand meet system requirements. In 2002 these trucks traveled approximately 9.9 billion vmt.

Factors influencing detection include:

1. System Sensitivity
2. Virtual Exposure Time Extension
3. Virtual Stationary Viewpoints

Some Factors influencing Detection of Nuclear Materials:

- System Sensitivity
- Virtual Exposure Time Extension
- Virtual Stationary Viewpoints

Consider the following: A method for the detection of clandestine weapons and materials, and the element of surprise is a weapon of war. How do we respond? Will nuclear material arrive in a transport container? Is it possible to intercept a truck shortly after entry into the U.S.? Can we detect weapons material? Are the vehicles System Equipped? Can we respond in an instant? Is this value justifiable? Can this be made feasible? A nationwide system is proposed where autonomous WMD sensor packages would be installed on various commercial fleet vehicles, such as semi-trailers, trains, taxicabs, etc. These autonomous sensor packages would essentially be piggybacking on existing vehicles, requiring little, if any, driver interaction.